

    
      
          
            
  
Welcome to My Toy Package’s documentation!


Contents:


	My Toy Package
	Credits





	Tutorial
	Preliminaries

	Create your package

	During the Life of Your Package





	Installation
	Stable release

	From sources





	Usage

	Reference
	A Nice Section

	Another Nice Section





	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying





	Credits
	Development Lead

	Contributors





	History
	0.9.0 (2020-01-22)

	0.8.0 (2020-01-19)

	0.7.0 (2020-01-16)

	0.6.1 (2019-12-20)

	0.6.0 (2019-12-20)

	0.5.0 (2019-12-19)

	0.4.3 (2019-12-19)

	0.4.2 (2019-12-19)

	0.4.1 (2019-12-19)

	0.3.2 (2019-06-27)

	0.3.1 (2019-06-27)

	0.3.0 (2019-06-26)

	0.2.5 (2019-06-26)

	0.2.4 (2019-06-26)

	0.2.3 (2019-06-26)

	0.2.2 (2019-04-03)

	0.2.1 (2019-03-27)

	0.2.0 (2019-03-27)

	0.1.6 (2018-03-06)

	0.1.5 (2018-03-06)

	0.1.0 (2018-03-06)












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
My Toy Package

[image: _images/my_toy_package.svg]
 [https://pypi.python.org/pypi/my_toy_package][image: _images/my_toy_package1.svg]
 [https://travis-ci.org/francois-durand/my_toy_package][image: Documentation Status]
 [https://my-toy-package.readthedocs.io/en/latest/?badge=latest][image: Code Coverage]
 [https://codecov.io/gh/francois-durand/my_toy_package/branch/master/graphs/badge]My Toy Package shows how to create and maintain a package.


	Free software: GNU General Public License v3.


	Documentation: https://my-toy-package.readthedocs.io.




The core of this package is a tutorial that gives a checklist of how to create and maintain your Python package,
especially relying on Cookiecutter, by Audrey Roy Greenfeld, and PyCharm. We also use GitHub, ReadTheDocs, PyPI,
Travis CI, Codecov and Pyup.


Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.







          

      

      

    

  

    
      
          
            
  
Tutorial

In the end, here is how it will work.


	You use the PyCharm IDE. It is configured to run tests and generate the documentation of your package locally.


	Your project is on GitHub. When you push modifications to GitHub:



	Travis CI automatically runs all the tests and checks that everything is working on several versions of Python
(e.g. 3.5, 3.6, 3.7)


	Codecov enables you to see what parts of your code are covered or not by your tests.


	ReadTheDocs automatically generates the documentation and publishes it online.









	When you “tag” a version on GitHub, in other words when you “draft a release”: Travis CI not only performs
the tests but also generates the distribution files of your package and publishes them on PyPI. As a consequence,
any Python user will be able to install you package via pip install the_name_of_your_package.


	Generally, you use some external packages during the development process of your own package, for example sphinx,
pytest, etc. These packages and their versions are listed in the file requirements_dev.txt of your package, so
that each member of your team know which version is used. PyUp informs you when a new version of these
third-party packages are released: you receive a pull request in GitHub and you just have to accept it.





Preliminaries


Create accounts on the websites

Ensure that you have accounts (preferably with the same login) on:


	GitHub [https://github.com],


	ReadTheDocs [https://readthedocs.org],


	PyPI [https://pypi.python.org/pypi],


	Travis-CI [https://travis-ci.org],


	Codecov [https://codecov.io],


	Pyup [https://pyup.io].







Install Cookiecutter

In a terminal (e.g. Anaconda Prompt):

pip install cookiecutter








Install Git

If necessary, install git: https://git-scm.com/downloads . You may need to restart your computer.




Change the documentation style in PyCharm

Do this if you want to use Numpy style of documentation. In the “Welcome to PyCharm” window (before you open a
project): Configure → Settings → Tools → Python Integrated Tools → Docstrings → Docstring format → NumPy.




Register your GitHub account in PyCharm

In PyCharm:


	Menu File → Settings → Version Control → GitHub.


	Click on the “+” icon.


	Fill in the form and validate.







Register your GitHub account in ReadTheDocs

On ReadTheDocs website: Paramètres → Comptes liés. Check that your GitHub account is listed here.




Install Travis Client on your computer


	Under Windows:


	Install Ruby (https://rubyinstaller.org/ ).


	Run PyCharm as Administrator.


	In PyCharm terminal, do: gem install -V travis. If it does not work, restart your computer
and try again.






	Under Debian, run as root:

apt-get update
apt-get install cookie-cutter ruby ruby-dev gcc
gem install -V travis







	Under Ubuntu 16, run:

sudo apt-get install ruby-dev
sudo gem install -V travis









If you experience troubles installing travis, cf. https://github.com/travis-ci/travis.rb#installation.






Create your package

This section is adapted from: https://cookiecutter-pypackage.readthedocs.io/en/latest/tutorial.html .


Generate Your Package


	Your project will need a project name (e.g. My Toy Package) and a project slug (typically my_toy_package).
Before starting, check that your project slug is not used in PyPI.


	In a terminal (e.g. Anaconda Prompt):


	Go to the parent directory of where you want to put the directory of your package, e.g. D:\GitHub\.


	cookiecutter https://github.com/francois-durand/cookiecutter-my_toy_package.git


	Answer the questions. Here is an example (some explanations follow):

full_name [F. Durand]: François Durand
email [fradurand@gmail.com]: fradurand@gmail.com
github_username [francois-durand]: francois-durand
project_name [Python Boilerplate]: My Toy Package
project_slug [my_toy_package]:
project_short_description [Python Boilerplate contains all the boilerplate
you need to create a Python package.]: My Toy Package shows how to
create and maintain a package.
pypi_username [francois-durand]:
version [0.1.0]:
use_pytest [y]:
use_codecov [y]:
use_pypi_deployment_with_travis [y]:
add_pyup_badge [n]:
Select command_line_interface:
1 - No command-line interface
2 - Click
3 - Argparse
Choose from 1, 2, 3 (1, 2, 3) [1]:
create_author_file [y]:
Select open_source_license:
1 - GNU General Public License v3
2 - MIT license
3 - BSD license
4 - ISC license
5 - Apache Software License 2.0
6 - Not open source
Choose from 1, 2, 3, 4, 5, 6 (1, 2, 3, 4, 5, 6) [1]:













Some explanations now:


	use_pytest: there are essentially three ways to do unit tests in Python: unittest (the standard solution),
pytest (the recommended test package) and doctest (where tests are integrated in the docstrings). If you are new to
testing, I suggest using doctest. But even so, pytest is useful to configure your tests (as we will do a bit
later). For this reason, in all cases, my advice is to answer yes.


	use_codecov: you will use Codecov to assess the coverage of your code by your tests.


	use_pypi_deployment_with_travis: when you will do a release in GitHub, Travis will automatically release
your package on PyPI.


	add_pyup_badge: a pyup badge will appear in the readme of your package. I suggest to answer no.


	Click: this allows you to easily call your program with unix-style command, e.g. python my_program.py --help.
Argparse provides the same kind of feature. You can choose either of them, even if you do not use it for the
moment. But personally, I answer no.


	create_author_file: I suggest to answer yes.







Create the PyCharm Project

In PyCharm:


	Create new project.


	In Location, fetch the directory of your project, e.g. D:\GitHub\my_toy_package. Validate.


	Warning that the directory is not empty: validate.







Create the GitHub Repo

In PyCharm:


	Menu VCS → Import into version control → Share project on GitHub.


	Fill in the form and validate, e.g.:

New repository name: my_toy_package
Remote name: origin
Description: My Toy Package shows how to create and maintain a package.









In a browser, you can go to your GitHub account to check that everything is there.

N.B.: if you use a public GitHub repository, using PyPI is free (but not for a private repository).




Create a virtual environment

A virtual environment is essentially a Python installation dedicated to your project, with its own versions
of the third-party packages. It ensures that if you reuse this project several months later, it will still work…
This is not mandatory, but I suggest it especially if you use a third-party package that is still in
a 0.x.x release (which means that its API is not considered stable yet).


	Menu File → Settings → Project → Project Interpreter. (For Apple users: PyCharm → Preferences → Project →
Project Interpreter.)


	Click on the gear-shaped icon → Add.


	Fill in the form: New environment using Virtualenv. This directory proposed is just fine. Validate.







Install Dev Requirements

In the PyCharm terminal:


	Ensure you are in the directory of your package (e.g. D:\GitHub\my_toy_package).


	If you have set a virtual environment, ensure that it is activated: there should be (venv) at the beginning of
the line. If not:

Windows: venv\Scripts\activate
Linux:   source venv/bin/activate







	pip install -r requirements_dev.txt







Install Your Package in “Development Mode”

This way, your package behaves as if it were installed, but any change you make will have effect immediately.
In the PyCharm terminal, you should still be in the directory of your package, with your virtual environment activated.
Do:

python setup.py develop








Add a Run Configuration for Doctest

In PyCharm:


	Menu Run → Edit Configurations.


	Add a new configuration by clicking the + button → Python tests → pytest.


	Give a name to the configuration, e.g. All tests.


	Ignore the warning and validate.




Run this configuration: normally, it runs all the tests of the project.




Add a Run Configuration for Sphinx

In PyCharm:


	In the root of your project, add a directory named build.


	Menu Run → Edit Configurations.


	Plus icon (top left) → Python docs → Sphinx task.


	Give a name to the configuration, e.g. Generate docs.


	Input: the “docs” directory of your project.


	Output: the “build” directory of your project.


	OK.




Run this configuration: you should have a warning “Title underline too short”. Go to the mentioned file
and correct the problem. Then run the configuration again: normally, it generates the documentation. To
check the result, you can open the file build/index.html.




Set Up ReadTheDocs


	On ReadTheDocs website:


	Go to “My Projects”. Import a Project → Importer manuellement. Fill in the form and validate, e.g.:

my_toy_package
https://github.com/francois-durand/my_toy_package
Git







	Admin → Advanced settings. Check “Installer votre projet dans un virtualenv via setup.py install”.











Set Up Pyup

If you work on a “small” project, I suggest that you do not use pyup: it will just generate a lot of spam in your email
inbox. However, for a more ambitious project, it may be useful.


	On Pyup website:


	Click on the green Add Repo button and select the repo you created.


	A pop up appears. Personally, I checked the first item and unchecked the two others.




Within a few minutes, you will probably receive a pull request in GitHub (and in your email).



	On GitHub website, open the pull request and:


	Merge pull request.


	Accept merge.


	Delete branch.






	In PyCharm, menu VCS → Update project. This does a git update (to get the modifications done by Pyup).







Set Up Travis CI


	On Travis website:


	Login using your Github credentials.


	It may take a few minutes for Travis CI to load up a list of all your GitHub repos. If you do not see your
new repo, log out and log in again.


	Click on your new repo.


	Click on “Activate repository”.






	In PyCharm terminal, ensure that you are in the directory of your project and:

travis encrypt --add deploy.password "My PyPI password"





(replace with your actual password, in quotation marks).



	Open the file .travis.yml, which is in the root of your project (you can do so in PyCharm). Check that
deploy.password.secure is encoded.







Check that Everything is Working


	In PyCharm: commit/push if necessary, i.e.:


	Menu VCS → Commit.


	Enter a commit message.


	Commit → Commit and push.


	Push.






	In Travis CI website: go to Build History. The build should be a success (it may take several minutes).


	In Codecov website: once Travis has finished building, you can navigate in your project to see what parts
of the code are covered by the tests.


	In ReadTheDocs website:


	In Compilations, the doc should be transmis.


	Open the documentation.


	In the table of contents, click on the first page (e.g. My Toy Package). Depending on your initial
choice of options, you should have three to five badges:


	PyPI: invalid (there will be the version number after your first release).


	Build: passing.


	Docs: passing.


	Codecov (optional): with a percentage.


	Pyup (optional): up-to-date.






	In the table of contents, click on Reference. You should see the doc of your functions.








If you wish, you are now ready to release your first version (cf. below).






During the Life of Your Package


Release a Version

In PyCharm:


	Run the tests.


	Generate the documentation locally in order to check that it is working.


	Update the file HISTORY.rst.


	Check that the readme will be correctly rendered on PyPI. In a terminal:

python setup.py bdist
twine check dist/the_name_of_the_file.zip





where the_name_of_the_file must be replaced by the relevant file name.



	Commit/push.


	In PyCharm terminal, do one of the following:


	bumpversion patch (version x.y.z → x.y.(z+1)) when you made a backwards-compatible modification (such as a
bug fix).


	bumpversion minor (version x.y.z → x.(y+1).0) when you added a functionality.


	bumpversion major (version x.y.z → (x+1).0.0) when you changed the API. Note: in versions 0.y.z, the API is
not expected to be stable anyway.








If you were working on a secondary branch, do what you have to (pull request to master, etc).

On Github website, go to “releases”. Select “Draft a new release”, add a tag name (e.g. v0.1.0) and a message
(e.g. First stable version). Select “Publish release”.

After a few minutes, Travis CI has finished the built and it is deployed on PyPI.




Add a Module (= a File)

Typically, this is a file SubPackage\MyClass, containing class MyClass.


	In the file __init__.py: add the shortcut.


	In the file reference.rst: add the auto-documentation.







Use a Third-Party Package

For example, you want to use Numpy in your module.

In the file setup.py, in the list requirements, add the name of the package (e.g. 'numpy).




When You Receive a Pull Request from Pyup


	In GitHub website:


	Open the pull request.


	If necessary, wait until Travis CI has finished the build, so that you know there is no problem.


	Merge pull request.


	Confirm merge.


	Delete branch.


	In the front page, you Pyup badge should be up-to-date. If not, this is probably just a matter of time.
You can go to the Pyup website, click on the gear → reload.






	In PyCharm, Menu VCS → Update project.












          

      

      

    

  

    
      
          
            
  
Installation


Stable release

To install My Toy Package, run this command in your terminal:

$ pip install my_toy_package





This is the preferred method to install My Toy Package, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.




From sources

The sources for My Toy Package can be downloaded from the Github repo [https://github.com/francois-durand/my_toy_package].

You can either clone the public repository:

$ git clone git://github.com/francois-durand/my_toy_package





Or download the tarball [https://github.com/francois-durand/my_toy_package/tarball/master]:

$ curl  -OL https://github.com/francois-durand/my_toy_package/tarball/master





Once you have a copy of the source, you can install it with:

$ python setup.py install











          

      

      

    

  

    
      
          
            
  
Usage

To use My Toy Package in a project:

import my_toy_package









          

      

      

    

  

    
      
          
            
  
Reference


A Nice Section


	
class my_toy_package.MyClass1(a: float, b: float)

	A whatever-you-are-doing.


	Parameters

	
	a (float) – The a of the system. Must be non-negative.


	b (float) – The b of the system.









	
my_string

	A nice string.


	Type

	str










	Raises

	ValueError – If a is negative.





Notes

Document the __init__() method in the docstring of the class itself,
because the docstring of the __init__() method does not appear in the
documentation.


	Refer to a class this way: MyClass2 (except as a type indication, cf. update_b_from_class_2()).


	Refer to a method this way: addition().


	Refer to a method in another class: MyClass2.addition().


	Refer to an attribute this way: my_string.


	Refer to a property this way: a_square.


	Refer to a parameter or variable this way: a.




Examples

>>> my_object = MyClass1(a=5, b=3)






	
A_NICE_CONSTANT = 42

	This is a nice constant.






	
A_VERY_NICE_CONSTANT = 51

	




	
a_square

	The square of a.






	
addition() → float

	Add a and b.


	Returns

	The sum of a and b.



	Return type

	Number





Examples

>>> my_object = MyClass1(a=5, b=3)
>>> my_object.addition()
8










	
divide_a_by_c_and_add_d(c: float, d: float) → float

	Divide a by something and add something else.


	Parameters

	
	c (Number) – A non-zero number. You can say many things about this parameter
in several indented lines, like this.


	d (Number) – A beautiful number.






	Returns

	The result of a / c + d.



	Return type

	Number



	Raises

	ZeroDivisionError – If c = 0.





Notes

This function gives an example of documentation with typical features.

Examples

We can write some text to explain the following example:

>>> my_object = MyClass1(a=5, b=3)
>>> my_object.divide_a_by_c_and_add_d(c=2, d=10)
12.5





And we can explain a second example here:

>>> my_object = MyClass1(a=5, b=3)
>>> my_object.divide_a_by_c_and_add_d(c=2, d=20)
22.5










	
update_b_from_class_2(object_of_class_2)

	Update b from a MyClass2 object.


	Parameters

	object_of_class_2 (MyClass2) – An object from the other class. The purpose of this function is essentially to show how to document when
an argument is an object of another class.

N.B.: for the type of an argument, you can enter only the name of the class, e.g. MyClass2.
However, in the rest of the documentation, you must use the full syntax, like :class:`MyClass2`.







Examples

>>> my_object = MyClass1(a=5, b=3)
>>> my_object.update_b_from_class_2(MyClass2(42, 51))
>>> my_object.b
51
















Another Nice Section


	
class my_toy_package.MyClass2(a: float, b: float)

	A whatever-you-are-doing.


	Parameters

	
	a (float) – The a of the system.


	b (float) – The b of the system.








Examples

>>> my_object = MyClass2(a = 5, b = 3)






	
addition() → float

	Add a and b.


	Returns

	The sum of a and b.



	Return type

	Float





Examples

>>> my_object = MyClass2(a=5, b=3)
>>> my_object.addition()
8














	
class my_toy_package.MyClass3(a: float, b: float)

	A whatever-you-are-doing.


	Parameters

	
	a (float) – The a of the system.


	b (float) – The b of the system.








Examples

>>> my_object = MyClass3(a = 5, b = 3)






	
addition() → float

	Add a and b.


	Returns

	The sum of a and b.



	Return type

	Float





Examples

>>> my_object = MyClass3(a=5, b=3)
>>> my_object.addition()
8



















          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/francois-durand/my_toy_package/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.




Write Documentation

My Toy Package could always use more documentation, whether as part of the
official My Toy Package docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/francois-durand/my_toy_package/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up my_toy_package for local development.


	Fork the my_toy_package repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/my_toy_package.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv my_toy_package
$ cd my_toy_package/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 my_toy_package tests
$ python setup.py test or py.test
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/francois-durand/my_toy_package/pull_requests
and make sure that the tests pass for all supported Python versions.







Tips

To run a subset of tests:

$ py.test tests.test_my_toy_package








Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags





Travis will then deploy to PyPI if tests pass.







          

      

      

    

  

    
      
          
            
  
Credits


Development Lead


	François Durand <fradurand@gmail.com>







Contributors

None yet. Why not be the first?







          

      

      

    

  

    
      
          
            
  
History


0.9.0 (2020-01-22)


	The cookiecutter now features a pytest configuration in tox.ini and a file .coveragerc.


	As a consequence, it is not necessary anymore to add --doctest-modules when configuring the tests in PyCharm.







0.8.0 (2020-01-19)


	Create our own cookiecutter: francois-durand/cookiecutter-my_toy_package.


	In the tutorial:


	Remove the steps that are now unnecessary, because they are included in the cookiecutter.


	Create a section “Preliminaries” for the steps that are needed only once, not for every package creation.


	Reorganize the order of the steps into a more natural course of action.


	In PyCharm, change the documentation style to NumPy for all future package creations.











0.7.0 (2020-01-16)


	Configure Codecov and add a Codecov badge.


	Reach 100% of code coverage.


	In the tutorial, explain how to configure Codecov.







0.6.1 (2019-12-20)


	Add long_description_content_type in setup.py to avoid a warning in PyPI.







0.6.0 (2019-12-20)


	You may need to restart your computer after installing git.


	Cookiecutter now proposes argparse in addition to Click.


	It is not necessary to add twine to requirements_dev.txt (cookiecutter now does it).


	Update the procedure to install travis.


	It is not necessary anymore to remove mentions of Python 2.7 (cookiecutter has removed them).


	Remove the line modules from reference.rst.


	Add ReadTheDocs theme in conf.py.


	Create the directory build before setting up sphinx locally.







0.5.0 (2019-12-19)


	Explain how to indicate the type of an argument in the docstring when it is an object of one of your classes.







0.4.3 (2019-12-19)


	Correct the format of titles in HISTORY.rst to comply with PyPI’s demands.







0.4.2 (2019-12-19)


	Separate the tutorial from the readme file, in the hope that it will solve the deployment problem on PyPI.







0.4.1 (2019-12-19)


	Use numpy style of documentation instead of sphinx basic style.


	In the readme, correct the explanations about Pyup.


	Say more explicitly that some steps are optional, like setting a virtual environment or using pyup.


	Added how to make travis run the doctests (thanks to Quentin Lutz).


	Remove the version numbers from the dev requirements.







0.3.2 (2019-06-27)


	Try to deploy again on PyPI.







0.3.1 (2019-06-27)


	Try to deploy again on PyPI.







0.3.0 (2019-06-26)


	Try to change the minor version number to solve deployment problem on PyPI.







0.2.5 (2019-06-26)


	Downgrade dev requirements to try to solve deployment problem on PyPI.







0.2.4 (2019-06-26)


	Try to tackle deployment problem on PyPI.







0.2.3 (2019-06-26)


	Correct the procedure for version release.







0.2.2 (2019-04-03)


	Minor updates in documentation.







0.2.1 (2019-03-27)


	Update flake.







0.2.0 (2019-03-27)


	Configuration for local build of documentation with Sphinx.


	Release a version directly on Github’s website.


	Minor edits in documentation.







0.1.6 (2018-03-06)


	Minor edit in documentation.







0.1.5 (2018-03-06)


	Patch upload subpackages.







0.1.0 (2018-03-06)


	First release on PyPI.










          

      

      

    

  

    
      
          
            

Index



 A
 | D
 | M
 | U
 


A


  	
      	A_NICE_CONSTANT (my_toy_package.MyClass1 attribute)


      	a_square (my_toy_package.MyClass1 attribute)


      	A_VERY_NICE_CONSTANT (my_toy_package.MyClass1 attribute)


  

  	
      	addition() (my_toy_package.MyClass1 method)

      
        	(my_toy_package.MyClass2 method)


        	(my_toy_package.MyClass3 method)


      


  





D


  	
      	divide_a_by_c_and_add_d() (my_toy_package.MyClass1 method)


  





M


  	
      	my_string (my_toy_package.MyClass1 attribute)


      	MyClass1 (class in my_toy_package)


  

  	
      	MyClass2 (class in my_toy_package)


      	MyClass3 (class in my_toy_package)


  





U


  	
      	update_b_from_class_2() (my_toy_package.MyClass1 method)


  







          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to My Toy Package’s documentation!
        


        		
          My Toy Package
          
            		
              Credits
            


          


        


        		
          Tutorial
          
            		
              Preliminaries
              
                		
                  Create accounts on the websites
                


                		
                  Install Cookiecutter
                


                		
                  Install Git
                


                		
                  Change the documentation style in PyCharm
                


                		
                  Register your GitHub account in PyCharm
                


                		
                  Register your GitHub account in ReadTheDocs
                


                		
                  Install Travis Client on your computer
                


              


            


            		
              Create your package
              
                		
                  Generate Your Package
                


                		
                  Create the PyCharm Project
                


                		
                  Create the GitHub Repo
                


                		
                  Create a virtual environment
                


                		
                  Install Dev Requirements
                


                		
                  Install Your Package in “Development Mode”
                


                		
                  Add a Run Configuration for Doctest
                


                		
                  Add a Run Configuration for Sphinx
                


                		
                  Set Up ReadTheDocs
                


                		
                  Set Up Pyup
                


                		
                  Set Up Travis CI
                


                		
                  Check that Everything is Working
                


              


            


            		
              During the Life of Your Package
              
                		
                  Release a Version
                


                		
                  Add a Module (= a File)
                


                		
                  Use a Third-Party Package
                


                		
                  When You Receive a Pull Request from Pyup
                


              


            


          


        


        		
          Installation
          
            		
              Stable release
            


            		
              From sources
            


          


        


        		
          Usage
        


        		
          Reference
          
            		
              A Nice Section
            


            		
              Another Nice Section
            


          


        


        		
          Contributing
          
            		
              Types of Contributions
              
                		
                  Report Bugs
                


                		
                  Fix Bugs
                


                		
                  Implement Features
                


                		
                  Write Documentation
                


                		
                  Submit Feedback
                


              


            


            		
              Get Started!
            


            		
              Pull Request Guidelines
            


            		
              Tips
            


            		
              Deploying
            


          


        


        		
          Credits
          
            		
              Development Lead
            


            		
              Contributors
            


          


        


        		
          History
          
            		
              0.9.0 (2020-01-22)
            


            		
              0.8.0 (2020-01-19)
            


            		
              0.7.0 (2020-01-16)
            


            		
              0.6.1 (2019-12-20)
            


            		
              0.6.0 (2019-12-20)
            


            		
              0.5.0 (2019-12-19)
            


            		
              0.4.3 (2019-12-19)
            


            		
              0.4.2 (2019-12-19)
            


            		
              0.4.1 (2019-12-19)
            


            		
              0.3.2 (2019-06-27)
            


            		
              0.3.1 (2019-06-27)
            


            		
              0.3.0 (2019-06-26)
            


            		
              0.2.5 (2019-06-26)
            


            		
              0.2.4 (2019-06-26)
            


            		
              0.2.3 (2019-06-26)
            


            		
              0.2.2 (2019-04-03)
            


            		
              0.2.1 (2019-03-27)
            


            		
              0.2.0 (2019-03-27)
            


            		
              0.1.6 (2018-03-06)
            


            		
              0.1.5 (2018-03-06)
            


            		
              0.1.0 (2018-03-06)
            


          


        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





_static/up.png





_static/up-pressed.png





